61 research outputs found

    Leaf transcriptome analysis of a subtropical evergreen broadleaf plant, wild oil-tea camellia (Camellia oleifera), revealing candidate genes for cold acclimation

    Get PDF
    Single nucleotide polymorphism (SNP) positions in genes of Camellia oleifera. Genotypes of samples from Jinggang (JG01-04) and Lu (LS01-04) mountains are shown. (XLSX 8324 kb

    Molecular circuit for exponentiation based on the domain coding strategy

    Get PDF
    DNA strand displacement (DSD) is an efficient technology for constructing molecular circuits. However, system computing speed and the scale of logical gate circuits remain a huge challenge. In this paper, a new method of coding DNA domains is proposed to carry out logic computation. The structure of DNA strands is designed regularly, and the rules of domain coding are described. Based on this, multiple-input and one-output logic computing modules are built, which are the basic components forming digital circuits. If the module has n inputs, it can implement 2n logic functions, which reduces the difficulty of designing and simplifies the structure of molecular logic circuits. In order to verify the superiority of this method for developing large-scale complex circuits, the square root and exponentiation molecular circuits are built. Under the same experimental conditions, compared with the dual-track circuits, the simulation results show that the molecular circuits designed based on the domain coding strategy have faster response time, simpler circuit structure, and better parallelism and scalability. The method of forming digital circuits based on domain coding provides a more effective way to realize intricate molecular control systems and promotes the development of DNA computing

    patS Minigenes Inhibit Heterocyst Development of Anabaena sp. Strain PCC 7120

    Get PDF
    The patS gene encodes a small peptide that is required for normal heterocyst pattern formation in the cyanobacterium Anabaena sp. strain PCC 7120. PatS is proposed to control the heterocyst pattern by lateral inhibition. patS minigenes were constructed and expressed by different developmentally regulated promoters to gain further insight into PatS signaling. patS minigenes patS4 to patS8 encode PatS C-terminal 4 (GSGR) to 8 (CDERGSGR) oligopeptides. When expressed by P(petE), P(patS), or P(rbcL) promoters, patS5 to patS8 inhibited heterocyst formation but patS4 did not. In contrast to the full-length patS gene, P(hepA)-patS5 failed to restore a wild-type pattern in a patS null mutant, indicating that PatS-5 cannot function in cell-to-cell signaling if it is expressed in proheterocysts. To establish the location of the PatS receptor, PatS-5 was confined within the cytoplasm as a gfp-patS5 fusion. The green fluorescent protein GFP-PatS-5 fusion protein inhibited heterocyst formation. Similarly, full-length PatS with a C-terminal hexahistidine tag inhibited heterocyst formation. These data indicate that the PatS receptor is located in the cytoplasm, which is consistent with recently published data indicating that HetR is a PatS target. We speculated that overexpression of other Anabaena strain PCC 7120 RGSGR-encoding genes might show heterocyst inhibition activity. In addition to patS and hetN, open reading frame (ORF) all3290 and an unannotated ORF, orf77, encode an RGSGR motif. Overexpression of all3290 and orf77 under the control of the petE promoter inhibited heterocyst formation, indicating that the RGSGR motif can inhibit heterocyst development in a variety of contexts

    An ECG Monitoring and Alarming System Based On Android Smart Phone

    No full text
    ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring and alarming system based on Android smart phone. In our system, an ECG device collec...武汉大学、中国传媒大学、广东工业大学、中国计量学院、Engineering Information Institute、Scientific Research

    Ascorbate antagonizes nickel ion to regulate JMJD1A expression in kidney cancer cells

    No full text
    Abnormal expression of histone demethylase Jumonji domain-containing protein 1A (JMJD1A) is associated with many kinds of cancers. JMJD1A is also a hypoxic response gene and its expression is regulated by hypoxia-inducible factor-1 (HIF-1). In this study, we determined the role of JMJD1A in development and hypoxia pathway. We also measured the expression of JMJD1A and two hypoxia factors glucose transporter 1 (GLUT1) and vascular endothelial growth factor (VEGF) in 786-0 and HEK293 cells treated with different concentrations of NiCl2 (2.5100 M) for 24 h, and found that JMJD1A mRNA and protein were up-regulated with increased concentrations of NiCl2. We then observed that ascorbate could retard the up-regulated effect of NiCl2-induced JMJD1A expression in a dose-dependent manner through decreasing the stability of HIF-1 protein. Immunohistochemical analysis further demonstrated ascorbate antagonized Ni-2-induced up-regulation of JMJD1A expression in 786-0, HEK293, and OS-RC-2 cells. These findings suggest that both Ni-2 and ascorbate can regulate the expression of histone demethylase JMJD1A, which is important for cancer development or inhibition

    Effect of Unmanned Aerial Vehicle Flight Height on Droplet Distribution, Drift and Control of Cotton Aphids and Spider Mites

    No full text
    Unmanned aerial vehicles (UAVs), as emerging plant protection machinery, have the advantages of high operational efficiency, high speed, and low drift. The current study aimed to elucidate the characteristics of droplet distribution and drift, control efficiency on cotton aphids and spider mites, and attachment and absorption of cotton leaves during UAV spraying. Kromekote card and filter paper are used as samplers to collect droplets, and the droplet density, coverage rate, deposition, and drift percentage are statistically analyzed. The pooled results showed that the droplet uniformity, the droplet coverage rate, the deposition, and the drifting ability are higher when the UAV flight height was 2 m. The control effects by UAV spraying on cotton aphids and spider mites were 63.7% and 61.3%, respectively. These values are slightly inferior to those obtained through boom spraying. Cotton leaf attachment and absorption of spirodiclofen after UAV spraying were slightly lower than those after boom spraying, therefore, the control efficiency of cotton pests is slightly different. According to the different flight height operations by the UAV sprayer, the drift capability of the droplets at 2 m flight height was large, and the droplet uniformity and deposition were satisfactory. The research results could provide the theoretical basis and technical support for UAV operation

    The Effects of Fiber Inclusion on the Evolution of Desiccation Cracking in Soil-Cement

    No full text
    Desiccation cracking frequently occurs in mud, clay, and pavement. Understanding the evolution of desiccation cracking may facilitate the development of techniques to mitigate cracking and even prevent it from developing altogether. In this study, experimental investigations were performed focusing on the effects of fibers on the evolution of desiccation cracking in soil-cement. Varied types of fibers (i.e., jute fiber and polyvinyl alcohol fiber (PVA)) and fiber contents (i.e., 0%, 0.25%, 0.5%, and 1%) were involved. The digital image correlation (DIC) method was employed to capture the evolution and propagation of cracks in the soil-cement specimens when subjected to desiccation. The results show that the presence of fibers imposes significant effects on the crack propagation pattern as well as the area and length of the cracks in the soil-cement during shrinkage. The addition of fibers, however, insignificantly affects the evaporation rate of the specimens. The crack area and crack length of the specimens decreased significantly when more fibers were included. There were no macroscopic cracks observed in the specimens where the fiber content was 1%. The DIC method effectively helped to determine the evolution of displacement and strain field on the specimens’ surface during the drying process. The DIC method is therefore useful for crack monitoring

    Study on the Mechanical and Leaching Characteristics of Permeable Reactive Barrier Waste Solidified by Cement-Based Materials

    No full text
    The durability against wet-dry (w-d) cycles is an important parameter for the service life design of solidified permeable reactive barrier (PRB) waste. This study introduces the potential use of cement, fly ash, and carbide slag (CFC) for the stabilization/solidification (S/S) of PRB waste. In this study, solidified PRB waste was subjected to different w-d cycles ranging in times from 0 to 10. By analyzing the mass loss, the unconfined compressive strength (UCS), initial resistivity (IR), and the Mn2+ leaching concentration under different durability conditions, the results demonstrate that these variables increased and then tended to decrease with the number of w-d cycles. The UCS of contaminated soil is significantly correlated with IR. Moreover, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses indicate that the hydration products calcium silicate hydrate (C-S-H) and ettringite (AFt) are the main reasons for the enhancement of the UCS. However, the increase in Mn2+ concentration leads to a decrease in hydration products and the compactness of solidified soil, which has negative effects for the UCS and the leaching ion concentration. In general, the durability exhibited by the PRB waste treated with S/S in this paper was satisfactory. This study can provide theoretical guidance for practical engineering applications
    corecore